
PART XV

ROUTING: INSIDE AN AUTONOMOUS SYSTEM (RIP, OSPF, HELLO)

Static Vs. Dynamic Interior Routes

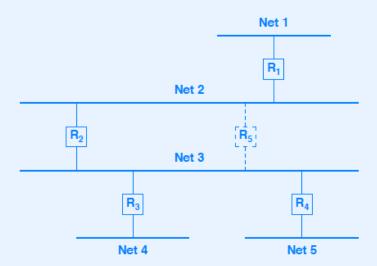
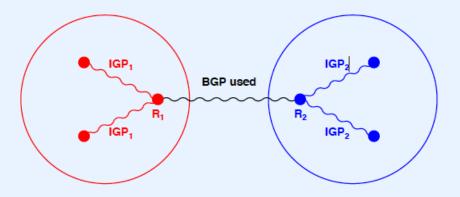

- Static routes
 - Initialized at startup
 - Never change
 - Typical for host
 - Sometimes used for router
- Dynamic router
 - Initialized at startup
 - Updated by route propagation protocols
 - Typical for router
 - Sometimes used in host

Illustration Of Topology In Which Static Routing Is Optimal

• Only one route exists for each destination

Illustration Of Topology In Which Dynamic Routing Is Needed



• Additional router introduces multiple paths

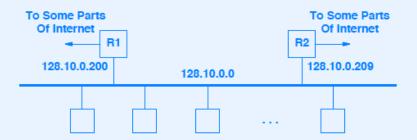
Exchanging Routing Information Within An Autonomous System

- Mechanisms called interior gateway protocols, IGPs
- Choice of IGP is made by autonomous system
- Note: if AS connects to rest of the world, a router in the AS must use an EGP to advertise network reachability to other autonomous systems.

Example Of Two Autonomous Systems And the Routing Protocols Used

Example IGPs

- RIP
- HELLO
- OSPF


Routing Information Protocol (RIP)

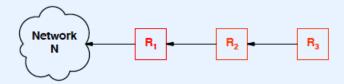
- Implemented by UNIX program *routed*
- Uses hop count metric
- Distance-vector protocol
- Relies on broadcast
- Assumes low-delay local area network
- Uses split horizon and poison reverse techniques to solve inconsistencies
- Current standard is RIP2

Two Forms Of RIP

- Active
 - Form used by routers
 - Broadcasts routing updates periodically
 - Uses incoming messages to update routes
- Passive
 - Form used by hosts
 - Uses incoming messages to update routes
 - Does not send updates

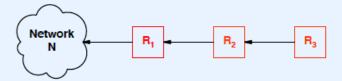
Illustration Of Hosts Using Passive RIP

• Host routing table initialized to:

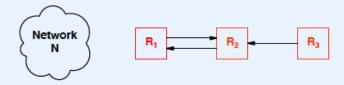

Destination	Route
128.10.0.0	direct
default	128.10.0.200

- Host listens for RIP broadcast and uses data to update table
- Eliminates ICMP redirects

RIP Operation


- Each router sends update every 30 seconds
- Update contains pairs of (destination address, distance)
- Distance of 16 is *infinity* (i.e., no route)

Slow Convergence Problem (Count To Infinity)



Routers with routes to network N

Slow Convergence Problem (Count To Infinity)

Routers with routes to network N

R₁ erroneously routes to R₂ after failure

RIP1 Update Format

0	8	16 31
COMMAND	VERSION (1)	RESERVED
FAMILY	OF NET 1	NET 1 ADDR., OCTETS 1 - 2
NET 1 ADDRESS, OCTETS 3 - 6		
NET 1 ADDRESS, OCTETS 7 - 10		
NET 1 ADDRESS, OCTETS 11 - 14		
DISTANCE TO NETWORK 1		
FAMILY OF NET 2		NET 2 ADDR., OCTETS 1 - 2
NET 2 ADDRESS, OCTETS 3-6		
NET 2 ADDRESS, OCTETS 7 - 10		
NET 2 ADDRESS, OCTETS 11 - 14		
DISTANCE TO NETWORK 2		

- Uses *FAMILY* field to support multiple protocols
- IP address sent in octets 3 6 of address field
- Message travels in UDP datagram

Changes To RIP In Version 2

- Update includes subnet mask
- Authentication supported
- Explicit next-hop information
- Messages can be multicast (optional)
 - IP multicast address is 224.0.0.9

RIP2 Update Format

0	8	16 31
COMMAND	VERSION (1)	UNUSED
FAMILY	OF NET 1	ROUTE TAG FOR NET 1
NET 1 IP ADDRESS		
NET 1 SUBNET MASK		
NET 1 NEXT HOP ADDRESS		
DISTANCE TO NETWORK 1		
FAMILY OF NET 2		ROUTE TAG FOR NET 2
NET 2 IP ADDRESS		
NET 2 SUBNET MASK		
NET 2 NEXT HOP ADDRESS		
DISTANCE TO NETWORK 2		

- Packet format is backward compatible
- Infinity still limited to 16
- RIP2 can be broadcast

Measures Of Distance That Have Been Used

- Hops
 - Zero-origin
 - One-origin (e.g., RIP)
- Delay
- Throughput
- Jitter

HELLO: A Protocol That Used Delay

- Developed by Dave Mills
- Measured delay in milliseconds
- Used by NSFNET fuzzballs
- Now historic

How HELLO Worked

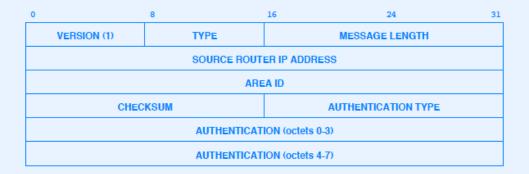
- Participants kept track of delay between pairs of routers
- HELLO propagated delay information across net
- Route chosen to minimize total delay

Route Oscillation

- Effective delay depends on traffic (delay increases as traffic increases)
- Using delay as metric means routing traffic where delay is low
- Increased traffic raises delay, which means route changes
- Routes tend to oscillate

Why HELLO Worked

- HELLO used only on NSFNET backbone
- All paths had equal throughput
- Route changes damped to avoid oscillation

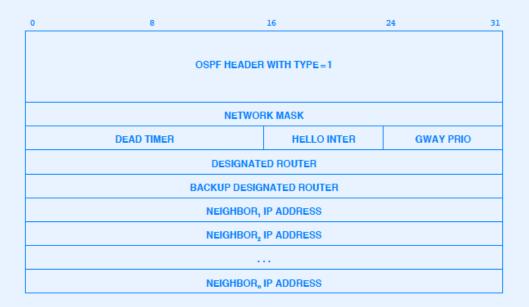

Open Shortest Path First (OSPF)

- Developed by IETF in response to vendors' proprietary protocols
- Uses SPF (link-state) algorithm
- More powerful than most predecessors
- Permits hierarchical topology
- More complex to install and manage

OSPF Features

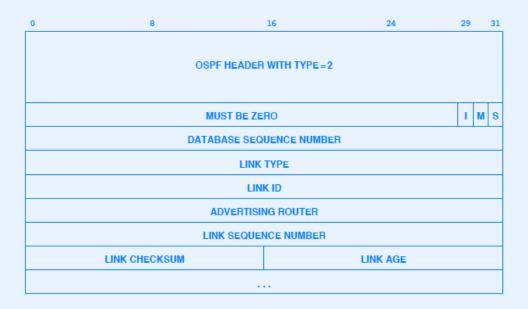
- Type of service routing
- Load balancing across multiple paths
- Networks partitioned into subsets called areas
- Message authentication
- Network-specific, subnet-specific, host-specific, and CIDR routes
- Designated router optimization for shared networks
- Virtual network topology abstracts away details
- Can import external routing information

OSPF Message Header



• Each message starts with same header

OSPF Message Types


Type	Meaning
1	Hello (used to test reachability)
2	Database description (topology)
3	Link status request
4	Link status update
5	Link status acknowledgement

OSPF HELLO Message Format

• Used to test reachability

OSPF Database Description Message Format

• Fields starting at LINK TYPE are repeated

Values In The LINK Field

Link Type	Meaning
1	Router link
2	Network link
3	Summary link (IP network)
4	Summary link (link to border router)
5	External link (link to another site)

OSPF Link Status Request Message Format

OSPF Link Status Update Message Format

Header Used In OSPF Link Status Advertisements

- Four possible formats follow
 - Links from a router to given area
 - Links from a router to physical net
 - Links from a router to physical nets of a subnetted IP network
 - Links from a router to nets at other sites

Discussion Question

• What are the tradeoffs connected with the issue of routing in the presence of partial information?

Summary

- Interior Gateway Protocols (IGPs) used within an AS
- Popular IGPs include
 - RIP (distance vector algorithm)
 - OSPF (link-state algorithm)